Barbara Miller-Webb

Recent posts by Barbara Miller-Webb

1 min read

What is the cost of doing nothing in additive manufacturing?

By Barbara Miller-Webb on Oct 13, 2021 1:17:05 PM

This question should be asked in various business initiatives.  However, I want to ask this question as it relates to additive manufacturing especially in smaller manufacturing companies that have yet to adopt additive manufacturing. 

When just beginning something—be it a journey for improvement or an initiative to ensure you are prepared, I always suggest starting small.  Companies that want to dip their toes into 3D printing have a couple of choices; own their own AM equipment or rely on service bureaus.  Times are also changing.  And those old production processes mean you could be losing your competitive edge by missing out on LARGE cost savings.  

Additive manufacturing can provide significant ROI to small manufacturers by helping:

  • Improve their industrial tooling processes
  • Produce more high-value, complex, low-run parts
  • Create highly customized products for their industry and their customers

Start with a basic step process for additive manufacturing:

  1. It starts with an organizational shift.  Generate an additive manufacturing mindset within the organization.
  2. Create a roadmap.  Pilot a targeted small area and then scale up.
  3. Develop a business case.  Examine impacts of parts from your supply chain and or product life cycle with the use of additive manufacturing.
  4. Identify challenges and evaluate whether additive manufacturing fits in your company.

You have to get started with additive manufacturing/3D printing - doing nothing gets you nothing!


Topics: 3D Printing Additive Manufacturing
2 min read

7 reasons why machine shops should be adopting metal additive mfg technology to their subtractive technology

By Barbara Miller-Webb on Aug 19, 2021 11:49:13 AM

Historically most machine shops have been job shops, which makes the business dependent on constantly obtaining new customers with new machining needs.  3D printers can enable a machine shop to create its own new products and gain more independence.  

Let us review why it makes sense to adopt 3D printers in machine shops today.  

  • Diversification - Metal 3D print technologies are the next evolution to the machine shop.  The ability to complement their subtractive with additive manufacturing.  The evolution of adding plastics, carbon, and now metal additive manufacturing to produce tooling, fixturing, and end-use parts.
  • Optimize the tooling with metal 3D printing.  Shops can now leverage 3D printing cost-effective plastic parts or metal parts to enhance workflows and projects.  A machine shop can rely on the printer to mitigate errors and improve timelines from pre-production prototyping to creating production tools to printing end-use parts for quick fixes.
  • Small-batch production — additive manufacturing technologies provide direct production options for low volume production and bridge manufacturing.  Save on tooling costs with 3D printing directly from a file, and take advantage of speed to market.

Complex geometries are the best use case for metal AM.

Most importantly, metal 3D printing

  • Is especially helpful for geometries that are costly, time and labor-intensive processes to produce on a CNC machine.  Designs that leverage metal AM's freedom to generate internal features of the part, intricate geometries such as lattices, and complex forms such as topology-optimized shapes to maximize their performance while minimizing their weight and the total number of components in an assembly.  
  • Communication to the machinists to help interpret drawings that have so many call-outs and can be difficult to catch all with complex geometries.  This helps eliminate time and material waste with a CNC job that a call-out may have been missed.  A 3D print can be a valuable tool prior to machined part production.
  • To produce parts for test fit and function.  This will shorten the feedback loop in the machine shop with 3D prints in advance of production.  3D printing allows for faster prototypes, setting up prints to run overnight then using parts the next day.

Jigs, fixtures, and other customized production tools are essential for efficient, effective manufacturing.  Tooling is a fixed expense that must be amortized across large quantities of parts. 

  • One important capability is an alternative to casting.  Machining lead times can be a hostage to the lead times from foundries delivering cast parts.  With production, metal additive manufacturing in-house, the machine shop can print its own parts as needed, without any lead-time from a supplier. 

In summary, additive manufacturing eliminates the following barriers with tolling-free production:

  1. Optimized designs
  2. Mass customization
  3. Rapid design to production
  4. Cost-effective at any scale
  5. Digital inventory
  6. Low operator burden

To learn more about metal additive manufacturing solutions, please connect with us directly at

Topics: 3D Printing Additive Manufacturing Metal Metal 3D Printing
2 min read

Investment Casting Using Additive Manufacturing Optimize your Foundry

By Barbara Miller-Webb on May 21, 2021 9:40:58 AM

The official definition of Investment casting is an industrial process based on lost-wax casting, one of the oldest known metal-forming techniques.  The term "lost-wax casting" can also refer to modern investment casting processes.

Additive manufacturing technologies are rapidly evolving and their applicability to investment casting grows with it.  Instead of using injection-molded wax patterns companies can now also choose to directly 3D print patterns using Stereolithography (SLA) and MultiJet (MJP) materials.  Using these AM technologies and 3D printer software such as 3D Sprint from 3D Systems, you can streamline your time and labor-intensive process to advance production and reduce expenses.  Today this is referred to by 3D Systems as "digital foundry" which enables foundries to deliver a new level of service to their customers.  There is no need to change anything in the workflow process.  More importantly, they can expect patterns in hours rather than days or weeks.  Foundries that want to compete in this market and maintain a competitive edge should be using additive manufacturing or... be left behind.  

With the new technologies for investment casting, foundries will be able to:

  1. Produce low volumes of casted parts from a CAD model in 24-48 hours
  2. Reduce the costs of tooling
  3. Eliminate the time it takes to produce tooling
  4. Reduce costs and space for tooling storage
  5. Deliver unmoldable products

Using powerful software such as 3D Sprint from 3D Systems you can apply chemical etching offsets.  Apply scale compensation for metal shrinkage.  Digitally create and position gates and vents.  Create sectioning of large parts and joints.  Prepare and optimize files for printing. 

Print your master pattern by choosing between plastic and wax master patterns.  But how do you determine which type of master pattern?  Let me summarize the differences:

With MultiJet printing (MJP) for wax casting patterns, you use 100% real wax printing technology.  This technology is great for small to medium size parts typically less than 8 inches in X, Y, and Z geometry.  These patterns are significantly lower in cost due to the material costs.  They are produced in less time than traditional patterns production again for low to medium volume prints.  You can expect accuracy and repeatability with wax patterns and fits into the existing investment casting process.  Also, ideal for customized metal components to bridge manufacturing.

With Stereolithography (SLA) for plastic casting patterns, you would use a castable resin material.  This provides you with highly accurate, high yield, large parts, and very complex lightweight master patterns.  They will maintain dimensional stability over years.  Typically, there is less manual finishing and labor expense with SLA processes.   3D Systems uses a QuickCast resin that is 30% lighter weight and provides consistent strength X, Y, Z geometries.

To learn more watch, the 3D Systems YouTube video. Understanding How 3D Printed Casting Patterns Work in the Foundry

Topics: 3D Printing Additive Manufacturing Stereolithography SLA Casting
3 min read

How are biocompatible materials revolutionizing medicine?

By Barbara Miller-Webb on Mar 15, 2021 12:07:58 PM

What is biocompatibility and how is it relevant to 3D printing? 

 “Biocompatibility is a general term describing the property of a material being compatible with living tissue. Biocompatible materials do not produce a toxic or immunological response when exposed to the body or bodily fluids. Biocompatible materials are central for use in medical implants and prosthetics to avoid rejection by the body tissue and to support harmonious biological functioning.”

3D printer materials have advanced in the medical field. So much that once what was impossible to imagine is now occurring. 3D printed technologies and materials have developed to the point that they are replacing traditional methods of bone and joint replacements in the human body. Knee replacements are often now printed in metal to replicate the replacement knee (using a scan to print an exact replica of the damaged knee) versus using the traditional method of machining net near shape knee and then working to make it fit. Let’s discuss a few of many applications specifically in the medical field. 

Biocompatible materials are used for 3D printing in various medical applications, including dental and orthopedic implants(spinal), drug delivery, hearing aids, tissue, craniomaxillofacial (CMF), dental, veterinary, and prosthesis. Common biocompatible 3D printing materials include polymers, metals, ceramics, composites, and carbon compounds. 3D printing facilitates the easy production of orthopedic implants, dental devices, surgical guides, anatomical models, medical tools, prostheses, and custom enclosures. Taking it one step further and not limited to the printing of organs, bone regeneration, and drug release.

Below I am highlighting some key application use cases with medical 3D printing:

  • The applications of Anatomic Models is still highly used in 3D printing and Medical image data is the foundation of highly-accurate, patient-specific anatomic models that can be made in a variety of materials to support patient education and surgical planning.  
  • A surgical guide is a medical device that is 3D printed based on the DICOM data which is patient specific. It is used for the accurate placement of the implant in the bone structure. It replicates the exact surfaces of the patient’s intraoral situation  
  • And in today’s Covid 19 environment we are printing PPE devices such as masks, ventilators, swabs, and more...
  • For instance, Align Technology produces transparent dental aligners – 17 million per year. With the help of 3D Systems 3D Printing. Most removable orthodontic appliances, including retainers and positioners, are made from plaster reference models; individual teeth on these models can be manually sectioned and repositioned with wax.
  • Surgical implants and prosthesis is advancing due to innovations in the biocompatible 3D printing materials market.

If you are in the medical space, are you keeping up with the medical advancements in 3D printing?

Biocompatible 3D printing technology is being increasingly used for tissue regeneration in vascular tissue engineering applications. Players operating in the biocompatible 3D printing materials market use the technology to produce patient-specific devices in the biomedical field. 3D printing serves as a resource for the production of devices and systems in biomaterials, and in the field of tissue engineering.  

There are Major Challenges for Biocompatible 3D Printing Materials Market – Why?

Currently, only a few biocompatible materials are widely employed in the healthcare industry. The U.S. FDA (United States Food & Drug Administration) has not yet approved the research in the development of some biocompatible materials. This is restraining the global biocompatible 3d printing materials market.

With 3D printing, the possibility of making health not only accessible but also individually customizable. Each day companies are making exciting discoveries and opening new doors for patients and healthcare professionals alike. The medical world is changing rapidly, and 3D printing will continue to revolutionize the path forward.

Click the link below to read the case study by 3D Systems to see how biocompatible and functional microfluidic components for rapid and portable diagnostics testing were developed.

Reach out if you want to discuss other case studies or biocompatible solutions.

Topics: 3D Printing Medical
2 min read

Complimenting Additive Manufacturing with Subtractive Manufacturing

By Barbara Miller-Webb on Jan 20, 2021 11:10:14 AM

When it comes to advancing manufacturing processes, people pick a team on which to play: the additive manufacturing team or the subtractive manufacturing team.  This meant that people used technologies such as MultiJet, SLA, SLS or FFF technologies for additive manufacturing, or CNC machining for subtractive manufacturing.  The result, companies have a divide with both sides feeling threatened and intimidated by the other.

Additive Manufacturing (AM) rose in the 1990's.  Companies thought this would replace traditional machining and I injection molds. It was realized AM at that time had limited materials tolerances, lower speeds and higher prices. AM adoption was slower with manufacturing as a result.  Traditional manufacturers were offended that a technology could replace their skill set.  On the flip side, additive manufacturers were not impressed by traditional manufacturers refusing to advance product development with speed or diversity.  This division slowed the acceptance to AM technology.

So what has changed today?  Proven successful applications over the years.  With the advancement of material properties, faster print technology, better resolution/tolerances and lower equipment pricing has companies adopting AM to complement subtractive manufacturing instead of competing.  More case studies are being produced today with successful applications.

What are a few applications we see additive manufacturing used successful within companies today?

  • Jigs or fixtures is used to locate, insert or support something.  Also go/no-go gauges.  Traditionally, these items have been machined which involved expense and time to program the work, buy the material and machine the parts.  3D printed parts can be printed overnight for next day needs, ensure repeatability, save scrap costs and lower the cost of production.
  • Mold inserts - low volume injection molds such as up to 200 shots are proving out for companies that want to get to market faster.  The divide is coming together with the designers helping design the fixtures for the tool room manager.
  • Thermoforming used as direct tools or custom 'inserts' within traditional tools
  • Sheet metal forming tools 3d printed will provide an efficient replacement to waterjet and laser.
  • Indirect master patterns save weeks and months with 3D printing.


I work with companies to help educate them about additive manufacturing, to help assure companies will not acquire the wrong technology for their application needs.  The real value of AM technology is found when people take time to learn where the complementing technologies and materials make sense.

A traditional manufacturer should embrace additive manufacturing, because it is truly complementary to their existing processes and adds value.

When customers see these technologies their manufacturers, they feel more comfortable that they are working with a progressive manufacture.  Additive manufacturing is no longer considered "hype".  It is here, and it is staying.  One common comment I hear from manufacturers that have implemented AM, "more applications and cost saving were discovered." While it is unclear if AM will ever fully replace subtractive manufacturing technologies, it seems fairly certain that it will, in the long run, become a significant complement to subtractive manufacturing.

Download the jigs and fixtures eBook for further ideas, or contact Barb Miller-Webb at

Topics: 3D Printing Additive Manufacturing jigs & fixtures
3 min read

Struggling to improve your innovation around manufacturing and 3D printing?

By Barbara Miller-Webb on Dec 16, 2020 9:47:53 AM

"The pain of Change could be LESS than the pain of NOT changing"

It's often not easy to change − whether it is a personal change or business change. I work with customers and often the path of least resistance is to stay status quo − not implement any changes or new processes because often it's perceived as the path of least resistance. I hear "We have done it this way for years and it works" but does it?  Often if you step back and analyze your areas of PAIN, the steps to address those challenges are often times easier than not changing. You can relate to this concept on a personal level if you think of eating healthy − or at least I can relate.  Often the initial change in diet is challenging − you don't like the food options − you miss eating past favorite foods and often the easiest thing to do is NOT change.  So often we are not determined to see the change through and give up.  The end result, we gain a few pounds and are not as healthy.  As opposed to going through the pain − changing our diet − and in the end having a healthier self!  The change seemed hard but easier than the bad habits leading up to issues later that are even more difficult to address than the current situation.

So how does this relate to 3D Print/Additive Manufacturing?  Often I work with clients that have a difficult time stepping back and looking at their overall processes and addressing the changes needed to avoid larger pains in the future.  Like eating right − they hear 3D printing is the future but think it does not apply to them.  I can tell you first hand the organizations that challenge themselves to be more innovative and focus in process change become class leading.  This ability to take on short term pain for long term gain makes them industry leaders − they look at any and all technologies to sustain continual improvements.  Needless to say their commitment to process change makes them industry leaders.  Ever look around and wonder how your competitors have implemented a change that you know gave them an advantage? Commitment to process improvement no matter how disruptive it may initially have been.

Let me get back to how you should look to see if 3D print may address some of your current or long term pains.  It starts internally to truly understand your current challenges and be honest within your organization.  The next step is to find a trusted partner you can be vulnerable with and work to outline/map a future to address those pains.  This of course is easier said than done − need I bring up dieting again?

As an example on how I personally work to be a trusted partner, I work with customers to understand their specific pains within their existing manufacturing process and then determine (together) if additive manufacturing or 3D printing can bring value to addressing their challenges.  I need to be candid often when there is no solution available − thus you need trust that a partner isn't just trying to sell you things.  My clients also need to trust in the process and be candid with themselves on the changes they need to make.  Many companies fail to recognize that change is a process that makes improvements to the organization, instead they ignore the problems/pains and continue to do the same thing over and over again.

If together we can't find a compelling reason/need to change the current process, or a personal impact, the change will not happen in the company.  We are conditioned to avoid pain and discomfort.  There's always adversity, fear, uncomfortable sensations, problems, distractions and so on.  We need to address the pain together...

How can trusted partners help customers discover the compelling reason?  The following are a few questions that I ask to help discover their compelling reason and you should make sure your vendor is asking you:

  1. What are your current biggest challenges in your manufacturing processes?
  2. Can you be more specific? Give me an example?
  3. How long has that been a problem?
  4. What have you tried to do about that?
  5. How much do you think that has cost you?
  6. How do you feel about that?
  7. Have you given up trying to deal with the problem?

Will the change you are considering:

  1. Speed up your time to market with your products?
  2. Cut costs in you manufacturing?
  3. Reduce your manufacturing downtime with on demand production?

Change will only happen when the pain of staying the same is greater than the pain of change.  I encourage you to take a step back from the whirlwind and really look at what current pains that are worth addressing.

My last note, check out Mark Blumreiter's blog 22 Ways Manufacturers are using 3D print to see if his outline sparks any ideas on areas 3D print can address your pains.

Even if we can't help you I am always up for great business discussions so don't hesitate to reach out if you want to chat on pain.

Topics: 3D Printing
2 min read

Overview of 3D Systems MJP Materials Families

By Barbara Miller-Webb on Nov 18, 2020 3:15:18 PM

My work involves working with customers and their application specific needs and trying to determine which materials on the 2500Plus Multi-jet printer are best for specific use cases.  Many once-valid opinions about additive materials are now myths.

The MJP 2500Plus now expands to 10 materials: five rigid class, two engineering grade, two elastomeric and one specialty for high temps.  VisiJet® M2 MultiJet Printing materials are for functional precision plastic and elastomeric parts. The rigid materials offer watertightness for evaluation of fluid flow performance.  Following are highlights and use cases for some of the materials:

VisiJet Armor is a tough, ABS-like impact resistant material.

  • Impact-resistant
  • ABS-like for snaps & drilling, jigs and fixtures, patterns and molds
  • World-class clear finish

VisiJet Rigid Grey

  • Primer Gray finish = exceptional feature detail viewing
  • Simple visual modeling applications
  • Medical Applications

VisiJet ProFlex

  • Durable, Polypropylene-like, High Impact Material
  • Capable of creating living hinge parts with multiple full actuations
  • Exceptional clarity
  • Ideal for applications requiring deformable plastic

VisiJet Rigid M2R-CL and WT; VisiJet CR-CL and WT materials are bio-compatible

USP Class VI - Rigid materials for the ProJet MJP 2500 and 5600 have passed USP Class VI biocompatibility certification.

  • Short term contact with human skin (30 days)
  • Mucosal-membrane (24 hrs)

ISO 10993 - Rigid materials for the ProJet MJP 2500 have passed the following testing criteria:

  • ISO 10993-5 - Cytotoxicity
  • ISO 10993-10 Sensitization Maximization Irritation
  • ISO 10993-10 Intracutaneous Reactivity

VisiJet M2S-HT90

  • Heat resistance with high heat deflection temperature at 90°C
  • Excellent humidity/moisture resistance
  • Rigid and transparent
  • Biocompatible
  • Molds and dies for rapid tooling applications

  -Under-the-hood components
  -Heated fluids and gasses flow analysis
  -Electronics enclosures/cases

  • Medical applications

For a quick look, 3D Systems also created an eBook that provides an overview of the 2500Plus materials portfolio.  In addition to features and material properties, the eBook ( provides guidance on how to assess additive materials, and what you should be looking for.  
Download the eBook to learn:

  • When to prototype, why and how to achieve faster time to market
  • How to reduce development cycles, lead-time and engineering effort
  • Prototyping for agile manufacturing, and key questions to ask before getting started 
  • How to use CAD data for design verification and types of prototyping
  • 3D printing technologies for rapid prototyping and choosing the best solution
Topics: 3D Printing
1 min read

How much could my business save?

By Barbara Miller-Webb on Nov 16, 2020 9:20:10 AM

Here's a question we're often asked:

"How much could my business save with 3D printing?"

That can vary depending on the application/need your company would be using 3D printing.  But a great place to start is by looking at other companies and how they have successfully achieved large ROI's with additive manufacturing.

  • Figure 4 Standalone enables contract manufacturer to exceed customer expectations with injection-molded quality 3D printed parts. Click here to read case study.

  • True-to-CAD accuracy and quick 3D printing speeds of 3D Systems ProJet® MJP 2500 fast track product development at Bushnell. To read Bushnell case study click here.
Topics: 3D Printing
1 min read

Eggshell Molding with Additive Manufacturing

By Barbara Miller-Webb on Oct 23, 2020 11:23:16 AM

Eggshell molding is 3D printings hidden gem application.  Eggshell molding is a sacrificial technique where a thin mold is printed and then material is injected into the mold.  The resulting mold is then broken away.  

Creating the eggshell mold is relatively simple; a CAD user creates a positive 0 set on the external surface of the model, then removes the original CAD to leave a hollow shell.  The resulting shell is, typically in the 3D Systems Figure 4's case, 0.3 mm thick.  The CAD designer will then add features to allow the injection of the material and some vents to prevent air pockets.

The shell is then printed using Figure 4 standalone and the specific eggshell molding resin 3D Systems has developed, "Eggshell-AMB 10."  The Figure 4 EGGSHELL-AMB 10 material is specifically engineered for the eggshell molding process.  A material like silicone can then be injected in using a syringe and the shell is then broken out with ease by hand because of the elastomeric properties of the usual end-use material.  

- For casting silicone parts in any durometer
     - Elongation at break: 5%
     - Tensile modulus: 2765 MPa
     - Impact strength (notched Izod): 15 J/m
     - Heat Deflection Temperature @ 0.455 MPa: 89°C 

For a quick look at the Eggshell -AMB 10 material properties, review the link:

Topics: 3D Printing